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ABSTRACT: This study reviews the recent addition of dropwindsonde wind data near the tropical cyclone (TC) center as
well as the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) into the National Centers
for Environmental Prediction (NCEP) Global Forecast System (GFS). The main finding is that the additional data have pro-
found positive impacts on subsequent TC track forecasts. For TCs in the North Atlantic (NATL) basin, statistically significant
improvements in track extend through 4–5 days during reconnaissance periods. Further assessment suggests that greater im-
provements might also be expected at days 6–7. This study also explores the importance of comprehensively assessing data
impact. For example, model or data assimilation changes can affect the so-called “early” and “late” versions of the forecast
very differently. It is also important to explore different ways to describe the error statistics. In several instances the impacts
of the additional data strongly differ depending on whether one examines the mean or median errors. The results demon-
strate the tremendous potential for further improving TC forecasts. The data added here were already operationally transmit-
ted and assimilated by other systems at NCEP, and many further improvements likely await with improved use of these and
other reconnaissance observations. This demonstrates the need of not only investing in data assimilation improvements, but
also enhancements to observational systems in order to reach next-generation hurricane forecasting goals.

SIGNIFICANCE STATEMENT: This study demonstrates that data gathered from reconnaissance missions into
tropical cyclones substantially improves tropical cyclone track forecasts.

KEYWORDS: Aircraft observations; Dropsondes; Numerical weather prediction/forecasting; Data assimilation;
Forecast verification/skill; Hurricanes/typhoons; Tropical cyclones

1. Introduction

With a goal of improving tropical cyclone (TC) forecasts, the
National Centers for Environmental Prediction (NCEP) and the
former National Meteorological Center (NMC) have assimilated
airborne reconnaissance data into various operational models
for about four decades. Over the years, models have gradually
assimilated more data to the point that some, such as NCEP’s
Hurricane Weather Research and Forecasting (HWRF) model,
now use most reconnaissance data transmitted in real time. Until
recently, however, the NCEP Global Forecast System (GFS)
used only a limited amount of available data. This paper will re-
view the recent addition of dropwindsonde wind data near the
TC center as well as the first-time addition of high-density,
flight-level reconnaissance observations (HDOBs) into GFS.

Among reconnaissance data types, dropwindsondes have
the longest history of operational assimilation. In the early
1980s (e.g., Burpee et al. 1984), airborne missions transmitted
a limited amount of dropwindsonde data for operational use.
The volume of dropwindsonde data assimilated had increased
by the early–mid-1990s, and Burpee et al. (1996) found that
they improved TC track forecasts up to 30%, which was about
as big as the entire improvement in track forecasts from 1970

to 1990. These impressive results led NOAA to invest more
heavily in TC reconnaissance, including the purchase of a
Gulfstream-IV (G-IV) jet for synoptic surveillance missions.
The G-IV missions also improved operational track forecasts,
though by somewhat smaller amounts (up to 15% in Aberson
2010). Ditchek et al. (2021, manuscript submitted to Wea.
Forecasting) reviewed the history of dropwindsonde impact
assessments from 1992 to 2019 and estimated a median track
improvement across various research and operational model-
ing systems of about 7%–8%.

A dedicated effort to assimilate other types of reconnais-
sance data, including high-resolution inner-core observations,
began around 2008. A number of studies with research-quality
regional data assimilation (DA) systems (Zhang et al. 2011;
Weng and Zhang 2012; Aberson et al. 2015; Weng and Zhang
2016, hereafter WZ16) began to show considerable improve-
ments in TC track and intensity forecasts associated with as-
similating airborne Doppler radar velocity data as well as
flight-level HDOBs (e.g., temperature, wind, and humidity)
and observations from the stepped frequency microwave
radiometer (SFMR). The most extensive of these studies,
WZ16, showed that assimilating dropwindsondes and HDOBs
together improved track and intensity forecasts by 10%–15%.
The operational HWRF has also recently advanced in both
model physics and DA, enabling use of all operationally
transmitted dropwindsonde data, HDOBs, and airborneCorresponding author: Jason A. Sippel, jason.sippel@noaa.gov
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Doppler radar data. NCEP last assessed the reconnaissance
impact for HWRF in a 2019 version of the model and found
that it improved the intensity forecast by 10%–15% through
72-h lead time (Zawislak et al. 2021, their Fig. 4).

The types of reconnaissance data assimilated into the
NCEP GFS, however, were still somewhat limited through
2020. Only dropwindsonde data were assimilated, and drop-
windsonde wind data close to the center of any TC was dis-
carded due to concerns of forecast degradation since
dropwindsonde drift (e.g., lateral advection) is not accounted
for in GFS (e.g., Aberson 2008; Aberson et al. 2017). Moti-
vated in part by the success of assimilating more reconnais-
sance data into HWRF, testing for the 2021 implementation
of the GFS version 16 (GFSv16) included an assessment of
adding more near-center dropwindsonde data as well as the
first-time addition of flight-level HDOBs into the GFS. Pre-
liminary analysis of the results led NCEP to include the addi-
tional data into GFSv16 (Farrar 2021a).

Here, a more comprehensive assessment of the impact of
the additional data is presented. Section 2 describes the experi-
ments, including the periods examined, the baseline configura-
tion of GFS, and details regarding the additionally assimilated
data. Sections 3–4 present results from different subsets of
cases, and a summary and conclusions are given in section 5.

2. Methods

a. Experiment setup

This study uses a preoperational version of the NCEP
GFSv16 that is nearly identical to the operational GFSv16.
GFSv16 is based on GFS version 15 (GFSv15), with 13-km
grid spacing and an upgraded physical parameterization pack-
age including GFDL microphysics (Zhou et al. 2019), an up-
dated parameterization of ozone photochemistry with
additional production and loss terms (McCormack et al.
2006), and a newly introduced parameterization of middle at-
mospheric water vapor photochemistry (McCormack et al.
2008). The data assimilation configuration in GFSv16 lever-
ages the same GSI-based hybrid four-dimensional ensemble-
variational (4DEnVar) solver (Kleist and Ide 2015) that was
utilized in GFSv15. Changes in GFSv16 include increasing the
vertical resolution from 64 to 127 levels and moving the model
top to 80-km height, improved physics, using the gain form of
the local ensemble transform Kalman filter (Lei et al. 2018),

and employing the four-dimensional incremental analysis up-
date technique for DA (Kleist et al. 2021; Yang et al. 2021;
Lei and Whitaker 2016). Note that GFSv16 does not use any
kind of vortex relocation or bogussing procedures, but it does
assimilate minimum sea level pressure (Kleist 2011) from the
TC vitals database (TCVitals).1

The two experiments here quantify the impact of assimilat-
ing additional reconnaissance data on TC forecasts from
GFSv16, with the only difference between the experiments
being that one experiment (OLD) does not assimilate the ad-
ditional reconnaissance data, and the other experiment
(NEW) does. Aside from some minor bug fixes that do not al-
ter interpretation of results or applicability to GFSv16 (Farrar
2021b), NEW is identical to the operational GFSv16. All
other operationally assimilated data in GFSv16 were included
in both experiments. Note that there is still reconnaissance
data assimilated into OLD (as with GFSv15), but only from
dropwindsondes, and not all dropwindsonde data were assimi-
lated. As part of operational preprocessing, dropwindsonde
wind data in OLD were discarded within a critical radius from
the center of any TC (which is the greater of 111 km or
3 times the radius of maximum wind speed) due to concerns
regarding dropwindsonde drift (i.e., the lateral advection of
dropwindsondes by the wind).2 NEW relaxed these criteria
for rejecting dropwindsonde wind data. In particular, all drop-
windsonde data for TCs weaker than hurricane intensity in
NEW were passed to the DA step, where it could be rejected
depending on the difference between the data and first guess.
In addition, for hurricanes the critical radius for the rejection
of dropwindsonde wind data was reduced to 55 km with no
consideration of the radius of maximum wind speed.3 NEW

TABLE 1. Specified observation errors used in GFSv16 for HDOB and dropwindsonde (DROPS) data for each given layer for
winds (UV), temperature (T), and relative humidity (RH). In layers where the assumed error does not vary, only a single value is
given. If the assumed error varies through a layer, then the error is expressed as a range from the bottom to the top of the layer. For
moisture, error is expressed in terms of relative humidity but changed to specific humidity within GSI.

Variable Surface–900 hPa 900–700 hPa 700–500 hPa 500–300 hPa 300–100 hPa

DROPS UV 2.4 m s21 2.4 m s21 2.4–2.8 m s21 2.8–3.4 m s21 3.4–2.5 m s21

DROPS T 1.2–0.9 K 0.9–0.8 K 0.8 K 0.8–0.9 K 0.9–1.2 K
DROPS RH 20% 20% 20% 20% 20%
HDOB UV 5.5 m s21 5.5 m s21 5.5 m s21 5.5 m s21 5.5 m s21

HDOB T 2.5–2.1 K 2.1–1.7 K 1.7 K 1.7 K 1.7 K
HDOB RH 20% 20% 20% 20% 20%

1 TCVitals contains operational estimates of a TC’s position, in-
tensity, size, and motion (Trahan and Sparling 2012).

2 Global DA at NCEP uses information only in the body of
WMO TEMP DROP messages, which only contain the dropwind-
sonde release point to the nearest tenth of a degree. Thus, the
entire dropwindsonde is assimilated in a column with a somewhat
inaccurate initial location, and not considering the lateral drift.
Since inner-core dropwindsondes in hurricanes sometimes travel
to the opposite side of the storm (e.g., Aberson 2008), assimilating
such wind data at the wrong location produces extreme, and erro-
neous analysis increments.

3 These changes were made with consideration of how much
drift was likely to be experienced by dropwindsondes in various
wind conditions.
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also added flight-level HDOBs, which are assimilated for the
first time in GFS. While SFMR data are also included in
HDOB transmission, that data have not been added in these ex-
periments and is not currently assimilated in GFSv16. Hereafter
in this study, HDOBs refer to only the flight-level HDOBs.

Settings for thinning and assumed observation errors were
obtained from GFSv15 for dropwindsonde observations and
from HWRF for HDOB data. The assumed observation error
for both data types is shown in Table 1 for reference. For
dropwindsondes released from the high-altitude G-IV, the
number of vertical levels (i.e., mandatory and significant lev-
els in WMO TEMP DROP data) in each dropwindsonde can
exceed 50. For lower altitude reconnaissance, the number of
levels in each dropwindsonde is typically less than 15. Thin-
ning is not applied to either data type, and for HDOB this
means the nominal data resolution is about 3 km along the
flight track. We acknowledge that assimilating the HDOB
data unthinned is suboptimal in GFSv16, and future results
can likely improve with optimized assimilation parameters for
both data types. Further, the specified observation error
needs tuning for both HDOBs and dropwindsondes. Finally,
the same temperature bias correction scheme was used for
the HDOB data as other aircraft data (Zhu et al. 2015).

Given that the vast majority of reconnaissance missions
sample North Atlantic basin (NATL; including the North

Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea)
TCs, the tests presented here focused on periods of NATL re-
connaissance. The periods of interest for which NEW ran in-
clude the following: 1) 0000 UTC 1 September 2018–1800
UTC 18 September 2018, 2) 0600 UTC 22 August 2019–0600
UTC 2 October 2019, 3) 1800 UTC 1 June 2020–1800 UTC
9 June 2020, and 4) 0600 UTC 20 July 2020–1800 UTC
4 August 2020. The storms encompassed by these periods are
listed in Tables 2–4 for 2018–20, respectively. These periods
include the most active periods of the 2018–19 NATL seasons
and the storms with NATL reconnaissance in 2020 that had
occurred up until the point when the NEW experiments were
conducted. Note that eastern North Pacific basin (EPAC)
TCs occurred during some of these periods, and this study ex-
amines both the direct and remote impacts of the additional
reconnaissance data on those TCs as well. Though there were
also storms in the western North Pacific (WPAC), substantial
sample size constraints limit interpretation of WPAC results.
The entire WPAC sample contains less than 150 forecasts at
0 h, and it decreases to less than 25 by 72 h. Results were quite
noisy and are not further reported below.

b. Verification

Verification is performed according to standard National
Hurricane Center (NHC) procedures against the best tracks

TABLE 3. As in Table 2, but for 2019.

Basin Storm (ID) Verification date range Recon date range

NATL Dorian (05) 1200 UTC 24 Aug 2019–1200 UTC 7 Sep 2019 1800 UTC 25 Aug 2019–1800 UTC 6 Sep 2019
NATL Erin (06) 1800 UTC 26 Aug 2019–0600 UTC 29 Aug 2019 }

NATL Fernand (07) 1200 UTC 3 Sep 2019–0000 UTC 5 Sep 2019 1800 UTC 3 Sep 2019–0600 UTC 4 Sep 2019
NATL Gabrielle (08) 1800 UTC 3 Sep 2019–0600 UTC 10 Sep 2019 }

NATL Humberto (09) 1800 UTC 13 Sep 2019–1800 UTC 19 Sep 2019 1800 UTC 12 Sep 2019–0600 UTC 19 Sep 2019
NATL Jerry (10) 1200 UTC 17 Sep 2019–0600 UTC 25 Sep 2019 1200 UTC 18 Sep 2019–0600 UTC 24 Sep 2019
NATL Imelda (11) 1200 UTC 17 Sep 2019–1200 UTC 19 Sep 2019 }

NATL Karen (12) 0600 UTC 22 Sep 2019–1200 UTC 27 Sep 2019 1800 UTC 21 Sep 2019–1800 UTC 26 Sep 2019
NATL Lorenzo (13) 0000 UTC 23 Sep 2019–0600 UTC 2 Oct 2019 1200 UTC 27 Sep 2019–0000 UTC 29 Sep 2019
EPAC Ivo (10) 0600 UTC 22 Aug 2019–1200 UTC 25 Aug 2019 1800 UTC 24 Aug 2019–0000 UTC 25 Aug 2019
EPAC Juliette (11) 0600 UTC 1 Sep 2019–1200 UTC 7 Sep 2019 }

EPAC Akoni (12) 1200 UTC 4 Sep 2019–0600 UTC 6 Sep 2019 }

EPAC Kiko (13) 1800 UTC 12 Sep 2019–1800 UTC 24 Sep 2019 }

EPAC Mario (14) 1200 UTC 17 Sep 2019–0000 UTC 23 Sep 2019 }

EPAC Lorena (15) 1200 UTC 17 Sep 2019–0600 UTC 22 Sep 2019 1800 UTC 20 Sep 2019–0000 UTC 22 Sep 2019
EPAC Narda (16) 0000 UTC 29 Sep 2019–0600 UTC 1 Oct 2019 }

TABLE 2. Storms from 2018 verified in NEW against OLD. The dates of verification are given in the third column, and the periods of
reconnaissance (if any) are shown in the final column.

Basin Storm (ID) Verification date range Recon date range

NATL Florence (06) 0600 UTC 2 Sep 2018–0600 UTC 17 Sep 2018 1200 UTC 8 Sep 2018–1800 UTC 14 Sep 2018
NATL Gordon (07) 0600 UTC 3 Sep 2018–1200 UTC 6 Sep 2018 1200 UTC 3 Sep 2018–0600 UTC 4 Sep 2018
NATL Helene (08) 1200 UTC 7 Sep 2018–0600 UTC 16 Sep 2018 }

NATL Isaac (09) 1200 UTC 7 Sep 2018–0000 UTC 15 Sep 2018 1200 UTC 12 Sep 2018–0600 UTC 15 Sep 2018
NATL Joyce (10) 0000 UTC 14 Sep 2018–1800 UTC 18 Sep 2018 }

EPAC Miriam (15) 0600–1200 UTC 2 Sep 2018 }

EPAC Norman (16) 0600 UTC 2 Sep 2018–1800 UTC 8 Sep 2018 1800 UTC 4 Sep 2018–0000 UTC 6 Sep 2018
EPAC Olivia (17) 0000 UTC 1 Sep 2018–0000 UTC 14 Sep 2018 1800 UTC 8 Sep 2018–0000 UTC 12 Sep 2018
EPAC Paul (18) 0600 UTC 8 Sep 2018–1800 UTC 11 Sep 2018 }
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available from NHC. Only tropical and subtropical systems of
at least depression intensity are verified, and no verification is
performed if the NCEP TC tracker (Marchok 2002) is unable
to find a vortex associated with a given system. No verification
is performed for situations with spurious TCs, either from
false alarms, or when the model continues to forecast a TC
beyond its dissipation in the best track. The statistics shown
below are homogeneous, meaning that both OLD and NEW
had to have a verifiable forecast for a given cycle in order for
it to be included in the sample.

The one exception to using NHC verification rules is that
the EPAC verification here includes storms initialized be-
tween 1408W and 1808 longitude, which helps consolidate the
limited sample of reconnaissance cycles in the EPAC. Opera-
tionally, NHC only verifies EPAC cycles if a storm is initial-
ized east of 1408W, which is the limit of their area of
responsibility (AOR). Using the expanded domain thus in-
cludes storms that operationally fell within the AOR of the
Central Pacific Hurricane Center (CPHC).

For completeness, we verify both “early” and “late” model
forecasts in this study. The late model forecast is the raw out-
put from the vortex tracker, but for a given cycle it is typically
not available until after operational centers issue their fore-
casts. Thus, operational centers typically base their forecasts
off postprocessed output from the most recent available cycle.
The postprocessing procedure, otherwise known as the inter-
polator, applies a bias correction determined by the bias in
the previous 6-h forecast for position and intensity. The inter-
polator applies the same position correction through the dura-
tion of the forecast, whereas the intensity correction linearly

decreases to 0 at a given lead time (120 h in GFSv16). In addi-
tion to bias correction, 10 passes of a 1:2:1 smoother are run
over the tracker 6-h intensity output for the early forecast.
The bias correction procedures are the reason why track and
intensity errors are near 0 at 0 h in the early-model forecasts
in sections 3–4.

Verification metrics used here include the mean absolute
error (MAE; the standard NHC verification metric), the me-
dian absolute error, mean error (i.e., bias), and the percent
improvement (i.e., skill) of both the MAE and the median.
As in Rappaport et al. (2009), track error is defined as the
great-circle distance between the forecast and best track posi-
tions, and intensity error is defined as the difference in the ob-
served and tracker-calculated maximum sustained 10-m wind
speed (i.e., Vmax). Though median errors are not typically
verified by NHC, we believe that they relay important infor-
mation not captured by the MAE since MAE can be strongly
influenced by the tail of the distribution. At times the two
metrics differ considerably.

Finally, we test for significant differences in MAE be-
tween the two experiments using a paired-sample t test,
which is the appropriate test since track and intensity errors
in OLD and NEW are well correlated at most verification
times through day 7 (not shown). While testing for signifi-
cance, we account for serial error correlation in the follow-
ing process:

• Calculate the time-lag forecast error correlation in NEW
for each variable at each lead time out to as many as five
cycles, or 24 h;

TABLE 5. Reduction factors from the adaptive serial correlation used for calculating statistical significance in each basin as a
function of lead time. Factors are given individually for track (TK) and Vmax (VM) for the NATL (AL) and EPAC (EP) according
to lead time (in days).

Day 0 1 2 3 4 5 6 7

LATE
AL}TK 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AL}VM 3 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 4 5 3 3 2
EP}TK 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 2 2 1 2 1
EP}VM 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 3 3 3 3 2 2 2 3 3 3 3 3 3

EARLY
AL}TK 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AL}VM 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 4 3 3 2
EP}TK 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 3 3 2 2 1 2 1 1
EP}VM 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 3 3 3 2 3 3 3 3 3 3 3 2

TABLE 4. As in Table 2, but for 2020.

Basin Storm (ID) Verification date range Recon date range

NATL Cristobal (03) 1800 UTC 1 Jun 2020–1800 UTC 9 Jun 2020 1200 UTC 2 Jun 2020–1200 UTC 7 Jun 2020
NATL Gonzalo (07) 1800 UTC 21 Jul 2020–1800 UTC 25 Jul 2020 1200 UTC 24 Jul 2020–0600 UTC 25 Jul 2020
NATL Hanna (08) 0000 UTC 23 Jul 2020–0000 UTC 27 Jul 2020 1800 UTC 22 Jul 2020–1800 UTC 25 Jul 2020
NATL Isaias (09) 0000 UTC 30 Jul 2020–1800 UTC 4 Aug 2020 1200 UTC 28 Jul 2020–0600 UTC 4 Aug 2020
NATL Ten (10) 1800 UTC 31 Jul 2020–1800 UTC 1 Aug 2020 }

EPAC Seven (07) 0600 UTC 20 Jul 2020–0600 UTC 21 Jul 2020 }

EPAC Douglas (08) 0000 UTC 21 Jul 2020–0600 UTC 29 Jul 2020 }
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• Assign a reduction factor to be the number of cycles (up to
5) to be used in all subsequent comparisons that it takes for
the error correlation to decrease to less than ∼0.7 (i.e., the
explained variance decreases to less than 50%);

• Divide the total sample size at each lead time by the corre-
sponding reduction factor, thus creating an effective sample
size used for significance testing.

Table 5 shows the reduction factors for the early and late
track and intensity forecasts for each basin. Note that the fac-
tors are quite different for track and intensity and from basin
to basin. This “adaptive serial correlation” approach differs
from recent studies (e.g., Alaka et al. 2017) that have used
constant reduction factors for all lead times and metrics, but
we believe it more accurately accounts for nuances in the er-
ror statistics. Finally, lead times when MAE in OLD and
NEW are statistically different with 95% confidence are
marked in each figure.

c. Reconnaissance sampling

Figure 1 gives a sense of where TCs in this study were
sampled and at what point in their life cycle they were sam-
pled. Note that TC locations included were only those that
would verify under the standard NHC verification rules as
detailed in section 2b. Figure 1a depicts the tracks of all
NATL and EPAC TCs within the periods of interest (Tables 2–4,
third column). Meanwhile, Fig. 1b shows the tracks of the same
storms but only during periods of reconnaissance (Tables 2–4,
fourth column).

The majority of reconnaissance focused on storms in either
the main development region or the subtropical Atlantic that
posed threats to either Caribbean islands or the continental
United States. There were also flights into some shorter-lived
storms in the Gulf of Mexico and some brief periods of cover-
age in the EPAC. Reconnaissance often begins during the
early and weaker stages of storms and continues as they

FIG. 1. The portions of tracks of TCs included in this study for which forecasts have been veri-
fied. Tracks are shown for (a) all cases and (b) only during periods of reconnaissance, defined as
the first to last cycle when reconnaissance occurred for a given storm. The initial position in
each track is marked with a white circle with a black outline, and each storm is identified ac-
cording to its year and storm number (e.g., 19:05L corresponds to NATL storm 05 from the
2019 season). Further, the intensity at each location is color coded according to the legend, and
white circle outlines along each track indicate each 0000 UTC time.
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strengthen, but that is not always the case. For example, mis-
sions began with Isaac (18:09L in Fig. 1) as it was decaying
and headed toward the Caribbean islands.

To further illustrate how reconnaissance missions related to
the evolution of observed storm intensity in a bulk sense, we
calculate a median observed intensity for the reconnaissance
periods. To make this calculation, we identify the first cycle
with reconnaissance data for a given TC. Corresponding with
this cycle, the observed Vmax value in the best track is as-
signed a “lead time” of 0 h (i.e., the cycle time), and subse-
quent observed Vmax values are assigned “lead times”
through 168 h later. This process is repeated for subsequent
cycles through the last cycle with reconnaissance, thereby cre-
ating a sample of the observed Vmax evolution. Note that this
sample includes the portions of storms identified in Fig. 1b
and in the fourth column of Tables 2–4. Figure 2 depicts the
median Vmax evolution of all TCs shown in Fig. 1b (solid
line) as well as the median Vmax evolution for those TCs in
Fig. 1b classified at 0 h of each cycle as weak storms (tropical
depressions and tropical storms; dashed black line) and strong
storms (hurricanes; dashed gray line).

The Vmax evolution of storms in this study during and after
periods of reconnaissance varies strongly depending on the
initial storm intensity. The typical reconnaissance mission
sampled a strong tropical storm, and if the system remained
tropical, it tended to be stronger over the subsequent 7 days
(Fig. 2, solid line). The stratification between strong and weak
systems reveals that missions flew into weak storms more fre-
quently (e.g., 129 versus 101 cases at 0 h), though the sample
size of the two groups was similar after the first day due to a
larger attrition rate of weak systems. Focusing just on the weak
storms that were sampled, the systems that remained tropical
tended to strengthen a great deal after a week. On day 7, the
median intensity for initially weak storms was around the major
hurricane threshold. Meanwhile, strong storms (i.e., hurricanes)
sampled by reconnaissance missions tended to weaken slightly
over the subsequent week if they remained tropical.

d. Example distribution of new data

The additional HDOB data accounts for the vast majority
of added data. To help illustrate this point, Fig. 3 compares
the distribution of reconnaissance wind data assimilated in
OLD and NEW during Hurricane Dorian (2019). In total,
NEW assimilated over 37 000 HDOB wind observations dur-
ing Dorian, while OLD did not assimilate any HDOB data
(Figs. 3a,c). Aside from extensive HDOB data in and around
Dorian, a large amount of data lies to the west along the flight
transit paths, which originate and terminate in either the
country of Aruba for the flights farthest east, or in Lakeland,
Florida, or Biloxi, Mississippi, as the storm neared the United
States (there was also a single mission into Tropical Storm
Fernand in the Gulf of Mexico during this period). In a single
well-sampled cycle near Dorian’s peak intensity (Fig. 3e),
NEW assimilated nearly 1300 HDOB wind observations.

As designed, NEW also assimilated a number of additional
dropwindsonde wind observations near Dorian’s center (Fig. 3,
right column). The difference in the number of dropwindsonde
wind observations assimilated between OLD and NEW was
roughly 2500, which is an approximate 25% increase in NEW
(Figs. 3b,d). The single aforementioned well-sampled cycle
assimilated about 70 more dropwindsonde wind observations in
NEW than OLD (Fig. 3f), concentrated near the 75-km radius.
In total, NEW assimilated almost 13000 dropwindsonde wind
observations over Dorian’s lifetime, about a third the amount of
the additional HDOB wind data assimilated in the same period.

3. NATL results

This section presents the impact of assimilating additional
reconnaissance data in NEW on various aspects of NATL TC
forecasts. Considering the primary interest of assimilating ad-
ditional reconnaissance data is to improve the forecasts of
storms with reconnaissance, we first present results focusing
exclusively on storms with reconnaissance from the first to the
last cycle with reconnaissance data (Figs. 4–10; Tables 2–4,
fourth column). Note that there are occasionally cycles with-
out reconnaissance in these periods, though errors are typi-
cally well correlated for at least a cycle (e.g., Table 5).
[Figures 11–13 then examine impacts on the full NATL

FIG. 2. The median Vmax evolution, calculated as described in
section 2c, for all (solid), initially weak (solid dashed), and initially
strong (gray dashed) storms.
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FIG. 3. Assimilated wind data from (left) HDOBs and (right) dropwindsondes (DROPS) during Hurricane Dorian
(a),(b) for the duration of the storm (0600 UTC 24 Aug 2019–0000 UTC 9 Sep 2019) in a regional, Earth-relative per-
spective; (c),(d) for the duration of the storm in a storm-centered perspective; and (e),(f) during the 0000 UTC
1 Sep 2019 cycle. Note that the gray markers indicate observations assimilated in both NEW and OLD, while the coral
markers indicate observations only assimilated in NEW.
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FIG. 4. Track and intensity verification evaluated only for the periods of reconnaissance in NATL storms that had
reconnaissance (i.e., the final column in Tables 2–4) in terms of (a)–(d) MAE and percent improvement of the MAE
and (e)–(f) intensity bias. (left) Late verification and (right) early verification, and the number of cases at each lead
time is shown at the bottom. The average percent improvement across all lead times is shown in the bottom right of
(a)–(d). Markers indicate lead times where mean errors are statistically different at the 95% confidence level based
on a paired t test with adaptive serial correlation.
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sample, including cases without reconnaissance (Tables 2–4,
third column).]

a. NATL reconnaissance periods

The most important result from this study is that including
additional reconnaissance data in NEW significantly reduces
both mean and median track errors in the NATL storms be-
ing sampled. In Fig. 4, which shows verification in terms of
MAE and percent improvement for NATL reconnaissance
storms during sampling periods, track improves by about 9%
(8.4%) on average, and by as much as 16% (15.5%) at indi-
vidual lead times in late (early) model forecasts when the ad-
ditional data are assimilated (Figs. 4a,b). The improvement is
statistically significant at many lead times through day 4, and
it remains substantial though not statistically significant after
that. On average, the additional data reduces track error on

days 4–5 by 35–40 km and results in superior forecasts at al-
most every lead time through day 7. Overall, the reduction in
track error in NEW is associated with improved along track
bias. Storms in both OLD and NEW tend to move faster than
those in the best track, but the additional reconnaissance data
substantially improves this trend in NEW at most verification
times (not shown). The cross-track bias in this sample is fairly
small, and the forecasts in OLD and NEW do not meaning-
fully differ in that respect (not shown).

The commensurate median track errors and interquartile
range (IQR) in Figs. 5a and 5b give more insight into the er-
ror distributions in NEW and OLD. Consistent with the
MAE, the median error and IQR bounds in NEW are smaller
than in OLD through most of the first 5 days. On days 6–7 the
median improvement in NEW remains quite large (.20%),
and the lower bound of the IQR is equal to or lower than that
in OLD. However, the upper bound of the IQR increases
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quite a bit in NEW during this time, suggesting an increas-
ingly asymmetric distribution of errors about the median.
This suggests the significance-test assumption of an approxi-
mately normal error distribution is poor and highlights the im-
portance of evaluating not just the MAE but also the median
error.

Histograms of late model track error at 84 and 168 h in
Fig. 6 give further insight into how OLD and NEW forecasts
behave. At 84 h (Fig. 6a), errors in both experiments have
roughly a chi-squared distribution. NEW has more frequent
errors in the bins , 200 km than OLD, whereas OLD has
more frequent errors in nearly every bin $ 200 km than
NEW. This uniform behavior yields similar improvements for
NEW as assessed either through the median or mean. The dis-
tribution in NEW at 168 h is not as clean as at 84 h, possibly
due to a limited sample size (∼30 cases), which yields inconsis-
tencies between the mean and median. NEW continues to
have more frequent errors in the lower bins than OLD, but it
also has a secondary frequency maximum around 800–1000 km.
The secondary maximum in NEW along with an outlier of
around 1400 km degrades its MAE relative to OLD but does
not substantially impact the median (Fig. 6b).

The impact of additional reconnaissance data on NATL in-
tensity forecasts is less straightforward than for track and de-
pends on postprocessing procedures. In the late model, the
additional data significantly degrades the intensity forecast for
the first 24 h (Fig. 4c) due to negative intensity bias (i.e.,
storms in NEW are too weak, Fig. 4e). The interpolator cor-
rects the negative intensity bias such that the early model in-
tensity improves at most lead times when the reconnaissance
data are assimilated (Fig. 4d). Overall, early intensity fore-
casts improve by 3.5% on average and up to 9%, though the
improvement is not significant. The median errors reveal even
greater improvement in NEW intensity at the extended lead
times where the sample is small (Figs. 5 c,d). This again

highlights the importance of evaluating not just the MAE but
also the median error.

The additional data also improves some other aspects of
TC forecasts, though those results are not shown for brevity.
For example, forecasts of sea level pressure improve in NEW
by up to 10%–20% after about 72 h in both the mean and
median. Furthermore, forecasts of the storm-force wind ra-
dius (i.e., 25 m s21, otherwise known as the 50-kt wind radius
in NHC verification parlance) in NEW also improve upon
OLD by 5%–10% at many verification times through day 6.
Meanwhile, consistent improvement in the mean and median
is not seen for other significant wind radii.

b. Dependence of NATL results on initial intensity
classification

Here we examine how the impacts of the additional data
evolve as the storms themselves evolve. To better illustrate
this, Figs. 7–9, respectively, show track errors, intensity er-
rors, and intensity bias for weak (tropical depression and
tropical storm) and strong (hurricane) storms. For brevity,
these results are only shown for the late model. Though the
differences are interesting, care should be taken not to over-
generalize because the sample sizes are quite small beyond
the first few days.

The track results detailed in section 3a have a fairly strong
dependence upon the initial storm classification. One obvious
difference between weak and strong systems in Figs. 7–8 is
that the track errors tend to be larger for weak systems, a
trend also seen in operational NHC forecasts (e.g., Fig. 4 of
Cangialosi 2022). For both classifications of TCs, the impact
of the additional data on the track forecast is on average
about the same as in the non-stratified reconnaissance sample
through day 4 (cf. Figs. 7–8a,b to Fig. 4a). One difference is
that track improvement for sampled hurricanes in NEW is

FIG. 6. Histograms of NATL absolute track errors in the recon subsamples of OLD and NEW at (a) 84 and (b) 168 h.
The mean and median of the distributions are indicated below each histogram.
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statistically significant on days 2–3, but differences for weak
systems are not significant beyond day 1. Meanwhile, on days
5–7 the track error for weak systems in NEW is worse than
OLD in terms of both the MAE and median absolute error
(Figs. 7a,b). The results are much different for hurricanes,
where MAE improvement in NEW is statistically significant
on day 6 and exceeds 20% at several lead times on days 6–7
(Fig. 8a). Additionally, the median improvement often ex-
ceeds 20% during this period (Fig. 8b).

As with track errors, intensity forecast errors also depend
strongly on the initial classification. Intensity errors for ini-
tially weak storms are slightly worse in NEW than in OLD at
almost every verification time (Figs. 7c,d). Commensurate
with these errors, the mean bias in NEW is consistently more
negative than in OLD (Fig. 9a). In other words, if reconnais-
sance samples a weak system, the additional data tends to
make the subsequent intensity forecast weaker and worse

through the duration of the forecast. The results substantially
differ when reconnaissance samples a hurricane. The addi-
tional data clearly makes the subsequent intensity forecast in
NEW much weaker than in OLD for the first 36 h (Fig. 9b),
which explains why the initial late-model intensity errors are
much worse in NEW for strong storms (Figs. 8c,d). After 36 h
the forecast intensity is on average stronger in NEW than
OLD (Fig. 9b), and the improved bias in NEW is a substantial
reason why the intensity MAE and median errors generally
also improve (Figs. 8c,d).

The large degradation in the short-term late intensity fore-
cast for hurricanes in NEW reflects a known issue when as-
similating inner-core data in TCs. The substantial negative
initial intensity bias imparted by the additional reconnais-
sance data is a much larger problem for hurricanes than for
weak systems (Fig. 9), and it clearly drives the negative bias
and larger absolute errors in Figs. 4–5. This result is similar to

FIG. 7. Track and intensity verification of weak TCs (tropical depressions and tropical storms) from the sample in
Figs. 4–5 in terms of (a),(c) MAE and percent improvement of the MAE and (b),(d) median errors and percent im-
provement of the median error. Lead times with statistically significant differences in MAE are indicated. Only late
verification is shown, and the figure is otherwise identical to previous figures.
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those in Tong et al. (2018), who found that assimilating inner-
core data in HWRF caused serious degradations to the short-
term intensity forecast (their Fig. 3). The degradation in that
paper was likewise due to large negative intensity biases
that resulted from assimilating inner-core reconnaissance
data into hurricanes (their Fig. 4). In their case, the negative

intensity biases were due to model physics deficiencies and
inappropriate error covariances in the hurricane core. In the
present case, the current GFSv16 grid spacing (13 km) is
clearly insufficient to resolve the inner-core structure of a
hurricane, so the late-model intensity degradation is not
particularly surprising.

FIG. 8. As in Fig. 7, but for strong TCs (i.e., hurricanes).

FIG. 9. As in Fig. 4e, but for (a) weak and (b) strong TCs.
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While the above results give an overall sense of the situa-
tionally dependent error characteristics, it is also useful to see
the impacts of the data in individual cases. As such, Fig. 10 ex-
plores the differences between OLD and NEW over a series
of forecasts of Hurricane Dorian as it approached the Southeast
United States. The first two forecasts (Figs. 10a,b) encompass

the period when Dorian was a disorganized tropical storm and
inner-core reconnaissance was just beginning. The subsequent
four forecasts (Figs. 10c–f) encompass the time when
Dorian was near peak intensity, including the 0000 UTC
1 September 2019 cycle shown in Figs. 3e and 3f. For brev-
ity, the focus here is exclusively on the track forecast.

FIG. 11. As in Fig. 4, but for the entire NATL sample.
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There is a very clear disparity in forecast errors in NEW
from the early to mature stages of the storm. For the two
weaker cycles in Fig. 10, the track forecasts in NEW are some-
what to significantly worse than those in OLD. In fact, the
1400-km error from Fig. 6b is from the forecast in Fig. 10b at
1200 UTC 27 August 2019. Subsequent track errors in NEW
become competitive with or superior to those in OLD within
another day as Dorian moves northwest and strengthens (not
shown). For the mature stage, one can immediately see that
the NEW forecasts tend to lie to the right of the OLD fore-
casts during the period of recurvature, which better agrees
with the best track. In particular, three of the four OLD fore-
casts during this period show landfall in Florida, Georgia, or
South Carolina, whereas the NEW forecasts correctly remain
offshore of those states. Though the NEW forecasts are un-
doubtedly superior during Dorian’s recurvature, the benefits
of the additional reconnaissance data do not extend to the
storm’s northeastward acceleration.

c. Entire NATL

Results from the entire NATL sample, including periods
and storms without reconnaissance, are qualitatively similar
to the sample that focuses on reconnaissance cases. Track
forecasts in NEW improve upon OLD by about 5.5% (4.5%)
on average, and by as much as 8.7% (7.5%) at individual lead
times in late (early) forecasts (Figs. 11a,b). Though including
cycles without the additional data diminishes the impact, the
improvement remains statistically significant during the first
36 h and on days 4–5. Similar to the smaller sample of cases
with reconnaissance data, the late intensity forecasts from
NEW significantly degrade during the first 12 h (Fig. 11c),
again due to negative bias (Fig. 11e). As seen in the cases with
reconnaissance, the interpolated intensity forecasts in NEW
are somewhat better than those in OLD, particularly within
the first 36 h (Fig. 11d). In terms of median errors, the track
improvement in NEW is similar to the MAE improvement
(Figs. 12a,b), though the intensity improvement is somewhat
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larger after 48 h in the early model (Figs. 12c,d). A notable
difference between OLD and NEW in terms of the track er-
ror IQR is that the lower bound of the IQR is quite a bit
lower in NEW on days 6–7 (Figs. 12a,b). In summary, assimi-
lating additional reconnaissance data improves even the en-
tire NATL sample, especially in terms of the early model
used in real time by NHC.

Considering that the number of cases outside reconnais-
sance periods constitutes roughly half the sample in
Figs. 11–12, it is valuable to understand precisely how those
cases contribute to the full-sample statistics. To do this,
Fig. 13 shows the late model (early omitted for brevity)
NATL track and intensity MAE and median errors and as-
sociated improvement for the non-reconnaissance portion
of the sample. The NEW track MAE in Fig. 13a remains
smaller than that in OLD, though the improvement

diminishes in terms of the median (Fig. 13b). At the longer
lead times, the MAE and median error both improve in
NEW, and the NEW IQR tends to encompass lower errors,
which suggests a small positive remote impact. Meanwhile,
both experiments exhibit overall similar intensity errors
(Figs. 13c,d). These results show that the diminished data
impact in the full sample generally reflects a simple dilution
and not negative remote impacts.

Curiously, a comparison of Fig. 13 with Figs. 4–5 reveals
very different track error characteristics in the reconnaissance
and no-reconnaissance samples. For example, in both OLD
and NEW, median track errors remain less than ∼300 km in
the reconnaissance sample through 120 h. However, in the
cases with only remote reconnaissance influence, the median
track error at 120 h is 400 km. Such stark differences in error
occur at most verification times for both the MAE and median

FIG. 13. Track and intensity verification during non-reconnaissance periods in terms of (a),(c) MAE and percent
improvement of the MAE and (b),(d) median errors and percent improvement of the median error. Points of statisti-
cal significance from the MAE verification are indicated for reference. Only late verification is shown, and the figure
is otherwise identical to previous figures.
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error. Two likely reasons for this difference are that the sample
within reconnaissance periods contains other reconnaissance data
(i.e., OLD and NEW treat environmental dropwindsondes
identically) and that storms in reconnaissance periods tend to
be closer to the data-rich U.S. observation network. In fact,
internal testing at NOAA has shown that launching

supplemental rawinsondes at 0600 and 1800 UTC in the U.S.
network substantially reduces TC track errors (M. Brennan
2022, personal communication). Meanwhile, intensity errors in
the reconnaissance period are not meaningfully different than
in periods without reconnaissance. Though these comparisons
are anecdotal since they cover different storms, they are
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FIG. 14. As in Fig. 4, but for EPAC reconnaissance cases.
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consistent with the finding that the added data in NEW signifi-
cantly alters the track but not the intensity.

4. EPAC results

We now examine the impact of assimilating additional recon-
naissance data in NEW on various aspects of EPAC TC fore-
casts. Given the very small sample size of EPAC cases with
reconnaissance in this study, the approach to analysis in this sec-
tion is a bit different than above. In particular, we examine the
cases with reconnaissance (Figs. 14–15) and the full sample
(Figs. 16–18) but do not perform additional stratifications.

a. EPAC reconnaissance periods

Reconnaissance missions sample EPAC tropical systems
much less frequently than NATL systems. With a few excep-
tions for research, missions only occur in the event of a hurri-
cane threat to the west coast of Mexico or for a tropical storm
or hurricane threat to Hawaii (NOAA 2021). During the

periods examined here, generally short periods of reconnais-
sance occurred for only 4 storms, as opposed to 13 storms
with some long-duration periods in the NATL sample
(Fig. 1b). This limits the EPAC sample size in this section to
about 10% of that in the NATL, thus limiting the robustness
of this dataset.

Generally speaking, assimilating additional reconnaissance data
does not directly improve forecasts of EPAC TCs in this sample.
In both the early and late models (Fig. 14), EPAC short-term
track forecasts significantly degrade with the additional data, but
they improve at later lead times. The late NEW intensity forecast
is also worse than that of OLD at short lead times (Fig. 14c), but
similar to the NATL results, the early model intensity in NEW
(Fig. 14d) improves upon the late model. The additional data in
NEW results in slightly larger negative bias in the late intensity
forecast (Fig. 14e), but the interpolator adequately removes that
bias (Fig. 14f). Results are similar in terms of median error
(Fig. 15) with the exception that NEW performs better than
OLD at extended lead times, though the sample size is tiny.

FIG. 15. As in Fig. 5, but for EPAC reconnaissance periods.
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The reason for the discrepancy between the EPAC and
NATL results is unclear. A few possibilities include funda-
mentally different storm characteristics, intermittent EPAC
sampling, different approaches to reconnaissance in the

EPAC (e.g., generally less inner-core sampling), or simply
sampling error. Perhaps little should be read into the EPAC
results here since the sample size is small, and half the sample
comes from one storm}Olivia (2018).
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FIG. 16. As in Fig. 4, but for the entire EPAC sample.
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b. Entire EPAC sample

Remote influences strongly drive EPAC results here. As
mentioned in section 4a, only 10% of the cycles in Figs. 16–17
occurred during reconnaissance periods directly sampling
EPAC storms. Thus, the remainder generally occurred during
periods of NATL reconnaissance (cf. Tables 2–4 EPAC col-
umn three to NATL column four).

Unlike the NATL sample, adding reconnaissance data has
mixed impacts in the full EPAC sample and particularly
varies according to whether verifying the mean or median
error. The short-term track degrades significantly in NEW
compared with OLD (Fig. 16a), though the actual MAE
difference at these lead times is only about 5 km. The interpo-
lator does end up removing some, but not all, of this degrada-
tion in NEW (Fig. 16b). After 48 h, OLD and NEW have
very similar mean track errors. Though the median short-
term track errors also increase in NEW (Figs. 17a,b), they im-
prove upon those in OLD after 36 h. Similar to track,

additional reconnaissance (primarily in NATL) impacts mean
and median EPAC intensity errors differently. The mean in-
tensity errors in NEW are substantially larger than those in
OLD, though only one lead time yields statistically significant
differences in Fig. 16c. The median intensity errors in Figs.
17c,d differ less between the two experiments, particularly in
the early forecast.

As with the NATL track errors at extended lead times, his-
tograms shed light on the disparity between mean and median
performance of NEW relative to OLD. Figure 18 shows the
distribution of absolute track and intensity errors at 96 h. For
the track, NEW has a much larger peak frequency than OLD
in the bin centered on 100 km and generally lower frequencies
in the higher error bins. The exception is at 500 km, where
NEW has a number of outlier errors. Thus, the median error
in NEW outperforms OLD considerably, but the means are
nearly identical. Likewise, NEW and OLD have a similar
peak around 5 m s21 Vmax error, but NEW has a few more
outliers in the 30–35 m s21 bins. These outliers degrade the
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MAE relative to OLD, but they do not meaningfully impact
the median.

5. Discussion and conclusions

This study has found that assimilating additional recon-
naissance data (flight-level HDOBs and dropwindsonde
wind data near the TC center) has profound impacts on
subsequent track forecasts in the NCEP GFSv16 model.
For NATL TCs, statistically significant improvements in
track extend through 4–5 days during periods of reconnais-
sance. Even upon expanding to the entire NATL sample to
include storms and periods without reconnaissance, signifi-
cant improvement remains at some lead times. Further
assessment, discussed below, suggests that greater im-
provements might also be expected at the longer lead times
(e.g., days 6–7).

Aside from examining the impact of reconnaissance data,
this study also explores the importance of comprehensively
assessing data impact. For example, model or data assimilation
changes can affect the so-called “early” and “late” versions of
the forecast very differently. In this instance, adding data de-
graded the short-term late intensity forecasts, but that degra-
dation was a result of negative bias. The postprocessing that
occurs to generate the early forecast removes such short-term
biases such that a forecaster never sees them in real time
(though some forecasters do use information from the late
model output, the early output has a much more immediate
and direct impact on the actual operational forecast). In
another example, this study demonstrates the importance of
exploring different ways to describe the error statistics. In sev-
eral instances discussed below, the impacts of the additional
data strongly differ depending on whether one examines the
mean or median errors.

The first example of incongruence in impact assessed from
mean and median errors comes in the day 6–7 lead times. The
MAE in Fig. 4 gives the impression that the reconnaissance
impact begins to wane in the longer range forecast. However,
the median errors shown in Fig. 5 suggest that might not be
true. The forecast at long lead times has a fairly small sample
size and is more susceptible to outliers (e.g., Fig. 6). As such,
the 15%–30% median improvement seen on those days in
Fig. 5 might more accurately represent what could be ex-
pected in a larger sample.

Another example of the importance of assessing median
errors comes from the EPAC results, particularly for inten-
sity. The MAE in Figs. 16c and 16d leaves the distinct im-
pression that adding NATL reconnaissance observations
degrades EPAC track and intensity forecasts. However,
the median errors (Figs. 17c,d) tell a different story, sug-
gesting that even this larger sample is susceptible to out-
liers. Taking into account the available evidence, it
appears that the overall impact on EPAC TCs in this study
is mixed.

The results here are congruent with a large body of previ-
ous work that has demonstrated the positive impacts of recon-
naissance data. Among studies that have examined HDOB
impact, WZ16 probably provides the most comparable results
since they used a large sample focused exclusively on recon-
naissance periods and assessed similar observation types.
They showed that the combination of HDOB and dropwind-
sondes improved track forecasts by up to 15% in a research
data assimilation and forecast system. Nevertheless, there are
several major differences between WZ16 and the current
study. First, they used a regional system where the added data
could only affect the analysis within the vicinity of each storm.
Further, they assessed the impact of all dropswindondes and
HDOBs in their analysis domain.

FIG. 18. Histograms of EPAC (a) track and (b) intensity absolute errors in the full sample of OLD and NEW at 96 h.
The mean and median of the distributions are indicated below each histogram.
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Combined with the previous published work on dropwind-
sondes, the results of this study suggest that the net impact of
all currently used reconnaissance in GFSv16 (i.e., HDOBs
and all dropwindsondes) might exceed what WZ16 found.
Though such an assessment does not exist for GFSv16, here
we compare the track and intensity performance of GFSv16
during the 2021 NATL hurricane season during and outside
of reconnaissance periods. In particular, Fig. 19, respectively,
shows GFSv16 track and intensity skill with respect to the
CLP5 and OCD5 climatological and persistence models.
The left side of Fig. 19 shows verification for storms and
periods of no reconnaissance, while the right side shows
similar verification for storms and periods with reconnais-
sance. This assessment carries the caveat that the samples
with and without reconnaissance cover different cases so that
other impacts such as nearness to the U.S. observation net-
work cannot be accounted for. Nevertheless, 2021 GFSv16

track forecasts were much more skillful than CLP5 when re-
connaissance was available. Most notable is the improvement
at the extended lead times, where the difference in skill ap-
proaches 30%. Meanwhile, intensity skill relative to OCD5 in
the reconnaissance period generally does not improve except
at perhaps the extended lead times.

Improved use of available reconnaissance data is likely nec-
essary to meet current operational goals. For example, the
Hurricane Forecast Improvement Project (HFIP) recently set
forth a number of ambitious 10-yr goals (Marks et al. 2019) in
response to the Weather Research and Forecasting Innova-
tion Act of 2017. Goals related to numerical weather predic-
tion included:

• Reduce numerical forecast guidance errors by 50% from 2017;
• Produce 7-day forecast guidance similar to 2017 5-day fore-
cast guidance;
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• Improve guidance on preformation disturbances, including
genesis timing and track and intensity forecasts, by 20%
from 2017.

Though the goals are ambitious, the results here imply that
they are achievable with improved use of available data along
with data assimilation and model improvements. While add-
ing HDOB data and some additional dropwindsonde observa-
tions has certainly improved GFSv16 performance with TCs,
there remains a great deal of reconnaissance data that the
model still does not use.

In an example directly relevant to this study, the use of
dropwindsondes themselves at NCEP needs improvement.
Though NOAA reconnaissance missions transmit high-reso-
lution dropwindsonde data in real time, global DA at NCEP
uses information only in the body of WMO TEMP DROP
messages, which only contain the dropwindsonde release
point to the nearest tenth of a degree. Thus, an entire drop-
windsonde is assimilated in a column with a somewhat inaccu-
rate initial location, and not considering the dropwindsonde
drift. Since inner-core dropwindsondes in hurricanes some-
times travel to the opposite side of the storm (e.g., Aberson
2008), assimilating such wind data at the wrong location pro-
duces extreme, erroneous analysis increments. The current
way NCEP processes dropwindsonde data prevents inner-core
dropwindsondes in hurricanes from being used (Aberson
2008; Aberson et al. 2017), even in this study. Further, the
TEMP DROP messages only contain data at mandatory and
significant levels, which ongoing work suggests could limit
their impact (K. Sellwood 2022, personal communication).

Beyond enhanced use of dropwindsonde data, other im-
provements related to reconnaissance data usage can likely
improve GFSv16 forecasts further. In particular, neither oper-
ationally transmitted tail Doppler radar (TDR) data from the
NOAA reconnaissance planes (WP-3Ds and G-IV) nor
SFMR data are assimilated in the NCEP global DA system.
Both of these observation types have improved forecasts in
the operational HWRF and other research data assimilation
systems (e.g., Weng and Zhang 2012; Aberson et al. 2015).
Further, a number of research instruments on the NOAA re-
connaissance planes provide valuable observations that are
not currently transmitted to NCEP in real time. Among this
data are wind profiles from the Imaging Wind and Rain
Airborne Profiler (Guimond et al. 2014) and from a Doppler
wind lidar (Bucci 2020; Bucci et al. 2018; Zhang et al. 2018),
which provide valuable data that fill in current observational
gaps.

Other research has shown the tremendous value of assimi-
lating data from unmanned aerial systems (UAS) as well.
Wick et al. (2020) showed that data transmitted from the
Global Hawk UAS had fairly large positive impacts on both
the HWRF and GFS models. Of note, Global Hawk drop-
windsonde data improved TC track forecasts by up to 15% in
GFSv15. Key benefits of the Global Hawk include its high al-
titude (∼60 000 ft), and its long endurance (∼24 h) ensures
that nearly the entire tropical North Atlantic falls within its
sampling range. Meanwhile, Aksoy et al. (2022) demonstrated
benefits of assimilating data from a small UAS launched

during WP-3D missions into Hurricane Maria (2017). Ongo-
ing unpublished work has shown that these data also benefit
the operational HWRF model. The above evidence suggests
that UASs will likely play a key role in future TC forecast
improvement.

For the many cases that reconnaissance or UASs cannot
cover, improving assimilation from other data sources can
also significantly improve TC forecasts. Groundbreaking
research has shown that better use of oceanic data sources
can reduce forecast errors during rapid intensification
(Domingues et al. 2021; Le Hénaff et al. 2021), while other
work has shown that TC forecasts benefit from improved
used of satellite-derived winds (e.g., Velden et al. 2017;
Sawada et al. 2019; Lim et al. 2019; Lewis et al. 2020; Li
et al. 2020) and satellite radiance data (Zhang et al. 2016;
Minamide and Zhang 2017, 2018; Zhang et al. 2021).

In conclusion, this study has demonstrated the tremendous
potential for further improving TC forecasts. In addition to
the benefits shown here, many further improvements await
with improved use of these and other reconnaissance observa-
tions. This demonstrates the need of not only investing in
data assimilation improvements, but also enhancements to
observational systems in order to reach next-generation hurri-
cane forecasting goals.
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